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Abstract-Nonlinear parabolic partial differential equation with a concentration dependent diffusivity 
in semi-infinite region is solved by an analytical method under a constant flux boundary condition. The 
differential equation is transformed to a system of simultaneous linear ordinary differential equations. 
The solutions are represented by a series of products of the repeated integrals of the error function. 

NOMENCLATURE 

coefficient ; 
coefficient ; 
coefficient; 
thickness of sample [m]; 
relative diffusivity, = D(4)/0(4i); 
diffusivity [m’/h] ; 
repeated integral of the complemental 
error function; 
relative change of diffusivity, 

= D($i)/D(4 = 0); 
function; 
relative intensity of flux, 

=Nib/4iD($i); 
mass flux at surface [kg/m’ h]; 
dimensionless time, = D(4Jt/b2; 

time [h]; 
dimensionless concentration (equation 4); 
dimensionless concentration due to Storm 
(equation 42); 

dimensionless concentration (equation 17); 
dimensionless length, = x/b; 

length from surface [ml; 
dimensionless length (equation 17); 
dimensionless length (equation 42). 

Greek symbols 

a, exponent; 

PY exponent ; 
i, dimensionless concentration (equation 42); 

‘I, similarity variable, = X/2,/T; 

6, auxiliary variable; 
K, parameter for relative dflusivity; 
v, auxiliary variable; 

5, auxiliary variable; 
7, dimensionless time, = K’ T; 

zr , concentration [kg/m3]; 
initial concentration [kg/m3]; 

X, auxiliary variable. 

INTRODUCTION 

THERE are some reasons to suppose that the moisture 
movement within a wet porous material during drying 
process may, under certain conditions, be described in 

terms of the diffusion equation [1,2], in which the 
apparent diffusivity, however, is usually a function of 
the moisture concentration. The unsteady state 
moisture distribution within the wet stock during the 
initial stage of drying is, thus, described by the following 
nonlinear diffusion equation; 

in O<x<b, t>O. (1) 

The initial and the boundary conditions for this equa- 
tion are described by; 

4=4i in O<X<b, t=O 
7 

D?=N. at x=0 
ax 1 ’ 

t>o 
(2) 

D3=0 at x=b, 
ax 

t>o 

Since the restriction ofthe finiteness in the coordinate 
x causes a great mathematical difficulty, the exact 
analytical solutions for such a nonlinear diffusion 
problem in the finite region are not known to date. 
Fortunately, it has been shown that if the flux Ni or 
the thickness b is sufficiently large, we can approximate 
the bounded region as semi-infinite, during the initial 
stage of the drying process [l, 31. The system of the 
equations, then, reduces to the following nonlinear 
diffusion equation in the semi-infinite region. 

1 
4 = 4i inOGx<co, t=o). (3) 

D!!!kN. 
ax 1 

at x = 0, t>o 
1 

The flux boundary condition in this system of equa- 
tions, however, makes it still very difficult to solve by 
an analytical method. The only exact solution has been 
presented by Storm [4] for such a system. Though his 
analysis has been extended to some problems by 
Knight and Philip [S], their solutions are valid only 
when the diffusivity obeys a certain functional form of 
the concentration. Besides, most of their solutions are 
not described in an explicit form. 
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In this article, a general analytical solution is pre- 
sented for the nonlinear diffusion problem in the semi- 
infinite region subject to the constant flux boundary 
condition. 

QUASI-LINEARIZATION 

The Kirchhoff transformation; 

D(4) dd (4) 

and the following dimensionless parameter and vari- 
ables* 

T = D(c#~Jt/h' 

x =x/h (5) 

D=D(4YD(4i) 1. 

reduce the system of the equation (3) to the following 
nondimensional quasi-linear diffusion equations; 

au 
-=D$ in O<X<zl, 
c;:T 

T>O 

u=o in OdX<W, at T=O) (6) 

au -= -1 
3X 

at X = 0, T>O 

where, the dimensionless relative diffusivity D is re- 

garded as a function of U. The functional form of D(U) 
depends directly on that of D(4) and may be evaluated 
by making use of the inverse of the Kirchhoff trans- 

formation. If the apparent diffusivity can be approxi- 
mated, for example, by the following exponential type 
equation; 

D(4)= A’exp(B.4) (71 

the dimensionless diffusivity, then is described by 

D(U) = I-ti.U. (8) 

The parameter K in this equation is defined by the 
following equation: 

K = NilnE (9) 

where 

Ni = Nib/‘4iD($i) (10) 

is the dimensionless flux density and 

E = D(4J/D(d, = 0) (11) 

is the relative change of the diffusivity. Some examples 
of the functional form of D and the definition of the 
parameter K for various types of the diffusivity D(4) 
are listed in Table 1 [6]. 

As seen from Table 1, the functional form of the 
relative diffusivity D may, in many cases, be described 
by the following series form; 

D(U)= ~-u,KC~--(I~(K~)~-~~(KU)~-... (12) 

The coefficients aj in this equation depend on the 

*Though the thickness of the sample b is used in these 
transformations, another characteristic length, D@)p/N or 
unit length for example, may be used instead of it. 

Table 1. Examples of the definitions of the rclati\c 
diffusivities and the parameters 

functional type of the diffusivity D(4) but do not 
depend on the flux density Ni nor the relative change 
of the diffusivity E. 

Substitution of equation (12) into equation (6) yields 

rlu G2U 

FT (3X2 
13 ; 

-[(L~KU+U~(KU)‘+U~(KL’)‘+.../ ,:, / 

,. Iii, 

LF = 0 at T=O 

iiU 
~ = -- 1 at X = 0. 

r?X 

Applying the perturbation method, one can easily 
prove that the solution can be expressed by 

U= U1+KU2+K2Uj+K3~~+... 114) 

where, the unknown functions Uj are defined by the 

following equations; 

The operator 9 in these equations is defined by the 
following integral transform; 

1 1. T ra 



A nonlinear diffusion problem 

Ifwe can evaluate the integral transforms in equation 
(15) by an analytical or a numerical method, we can 
obtain the solution U by making use of equation (14), 
but the integration procedures are practically im- 
possible. In the following section, another analytical 
approach to the general solution is discussed. 

equation (22). We finally find that; 

U,(T, X) = T0.5Fr(r/) 

U2(T, X) = T’.OF*(rJ) 

U,(T, X) = T’.5F&d 

U,(T, X) = T’,‘F.,(q) 
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SIMILARITY ANALYSIS 

Further transformations; 

v/=&J 

7=1c’T 

Z=xX 

reduce equation (13) to 

(17) 

V=O at t=O 1 (18) 

av -= 
az - 1 at Z = 0. 

The parameter K in equation (13) is eliminated by the 
transform (17). Hence the solution V(7, Z) for equation 
(18) should coincide with that of equation (13) for the 
case of K = 1, one can readily write; 

U(r, Z) lK = r = V(7, Z). (19) 

Applying the transforms (17), equation (19) becomes; 

u(7, Z)IK=l = KU(7/K2,Z/K)I,. (20) 

Substitution of equation (14) into (20) yields the follow- 
ing relations; 

ul(7, z) = KUl(T/K’, Z/K) 

U2(z, Z) = u’U~(TJK~, ZJK) 

U3(7, Z) = K3U3(7/K2,Z/K) 

1 

(21) 

. . . . J 

One can easily find that the following general func- 
tional form satisfies equation (21),* 

Uj( T, X) = 7”. Xp ’ Fj(q), j = 1,2,3, . . . (22) 

where, the exponents u and /I satisfy 

2ci+j3=j (23) 

and F is an unknown function of arbitrally similarity 
variable 1; 

rl = r?(X2/T). (24) 

We may use the simplest and well known definition; 

‘I = X/2,/T. (25) 

Hence the solution U is not always zero at the 
surface (X = 0), the exponent j is discarded from 

*Functions Uj are constant conformally invariant under 
the one parameter continuous transformation group (17) 
[9]. Therefore, Uj can be represented by a product of the 
absolute invariant F and the conformally invariant T”Xa. 

(26) 

. . . . 

Equations (14) and (26) yield; 

U = T0.5F1(r/) + KTF~(~) + ~c’T’.~F&) + . . (27) 

and 

CW 
%= {(F1-qF’l)T-0.5+~(2F2-~F;) 

+ K~(~F~ -qF3)To.’ + . . .}/2 

&= {F;+KF;T~~~+K~F;T~.~ 

+K~F~T~.~+...}/~ 

aw 
s = {F’; T-0.5+~FI;+~2F);T0.5 

+K~F”T’.‘+...}/~. 

. (28) 

Substituting equations (28) (27), (26) and (14) into (13), 
and collecting coefficients of like powers of the par- 
ameter K, lead the following simultaneous ordinary 
differential equations for Fj; 

F’i+2qF’-2Fl =O 

F;+2r/F2-4F2 = alFIF; 

F;+2qFj-6F3 = al(F1F’;+F2F’;) 
+a2F:F’; 

F~+2?Fk_8F4=Ul(F1F;+F2FI~+F3F;) 
+az(F:F;+2F,F2F;) 
+a3F:F; 

. . . 

. . . . I 
The conditions at X = 0; 

au - 
ax X=o = -1 

andatX= co; 

U(X-+co)=O 

yield the following boundary conditions for Fj; 

F;(r/ = 0) = -2 
F;(rj = 0) = F3(7/ = 0) 

= Fk(tj = 0) = . . = 0 

FI(V + ~0) = Fz(v + 00) 

=F3(q+oo)=...=0 

+ (29) 

(30) 

(31). 

(32) 

This system of the two point boundary value problem 
for the simultaneous linear ordinary differential equa- 
tions (29) can be easily solved by an analytical or a 
numerical method. The dimensionless concentration U, 
then, can be evaluated by making use of equations (26) 
and (14). The concentration distribution c#J(T, X) can 
be calculated by the inverse of the Kirchhoff trans- 
formation (4). Some examples are discussed in the 
^__ 
tollowing section. 
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EXAMPLES AND DISCUSSIONS 

1. Quadratical d@sion coejkient 
If the diffusion coefficient is inversely proportional 

to a quadratic equation of concentration; 

D(4) = (A.f$+B)-2 (33) 

the Kirchhoff transformation 

l-JD 
= ~(I-JD) 

= Ni(JE-1) K (34) 

yields a quadratic equation for the relative diffusivity; 

D = (1 -K-U)* 

ti = Ni(J/E- 1). 1 
(35) 

The coefficients aj in equation (12) then become 

aI = 2 
a2= -1 

I! 

(36) 
a3 = a4 = = 0. 

The simultaneous ordinary differential equations (29) 
and (32) then reduce to the following equations. 

F’;+2qF;-2F, =0 
F\(O)= -2 

1 

(37) 
Fl(CC) = 0 

F;+~v/F;-~F~ = 2FlF;’ 

F;(O) = 0 (38) 
Fz(m) = 0 I 

F’; + 2r/F; - 6F3 = 2(F1 F; +Fz F’,‘) - Ff F; 
Fj(0) = 0 

F3(CO) = 0 

I 

(39) 

. 

The analytical solutions for these equations are 
given by (Appendix); 

F1 = 2EI 

F2 = -6Ez+4EzE0 

F3 = 16E3-12(E3E0+EqE,) 
+4E2E2E-1+8E2EIE0 1 

(40) 

where, E, is defined by the repeated integral of the 
complemental error functions as; 

E,,(q) = i" erfc(q). (41) 

Further analytical solutions Fq, Fs, are not 
known, but the ordinary differential equation (36) can 
be solved easily by numerical method such as the 
Runge-Kuttamethod. Some examples of the numerical 
results are shown in Fig. 1. The numerical values of 
these functions Fj at the surface (q = 0) are listed in 
the Table 2. We can evaluate the unsteady state con- 
centration profile U(T, X) and the transient change of 
U at the surface by making use of these numerical 
values and equation (27). The calculated results are 
shown in Figs. 2 and 3. 

A strict analytical solution has been presented by 
Storm [4] for this special case of the dilTusivity. The 

05 
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1%. I. Examples of the functions Fj for the case of 
D(U) = (1 --KL~)‘. 

Table 2. Values of F,(O) for 
D = (@+B)-? 

F,(O) 1.128379167 (= Zi,,k) 
Fz(O) -0.5 (= - l/2) 
F,(O) 0.094031597 (= l/6 J7t) 

F.+(O) 0.0 

FS(O) -000235078Y (= - l/240 ;rr) 
Fe(O) 0.0 
F,(O) 0.000083957 (= 1/6720,‘n) 

-Th,s +hec,ry 

20 

KX 

FIG. 2. Transient distribution of the dimensionless concen- 
tration for the case of D(U) = (1 --KU)‘. 

IO 

This work”’ 

Storm’s solution 

K’ T 

FIG. 3. Transient change of the concentration at the surface 
[for the case of D(U) = (1 -KU)‘]. 

Storm’s transformations; 

5 = exp(A. W j 

142) 
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reduce the fundamental equation (3) to the following 
linear partial differential equation [3]. 

C=l at r=O 
) (43) 

x 
az= -ANi at z=O. 

J 

The exact solution is given by; 

;=l+Zp (?+l+X)erfc $+i 
( j 

-+erfc(&-~J-~exp{-($v-~~} (44) 

where the auxiliary variables v and x are defined by; 

(45) 

The transient change of U at the surface (X = 0) 
calculated from this strict solution (44) is also shown 
in Fig. 3. 

The unsteady state distribution of U(T, X), however, 
can not be evaluated from this solution, because 
equation (44) is not explicit form in the coordinate X. 
Direct numerical calculation of the finite difference 
equation for the original equation (6), then, were pre- 
formed. The numerical results are also shown in Fig. 2. 
Fairly good agreement can be seen from these figures 
especially when the dimensionless time rcZT is less than 
unity. 

2. Exponential dzfjrusion coejicient 
If the diffusion coefficient is represented by an 

exponential function of the concentration; 

D(4) = A.exp(B*$) (46) 

the Kirchhoff transformation yields 

D(U)= 1-ic.U 

K = Ni.lnE. 1 
(47) 

The coefficients aj in equation (12) then become; 

aI = 1 

a2 = a3 = . . . = 0. 1 
(48) 

The solutions for the ordinary differential equations 
(29) then become; 

F1 = 2E1 

F2 = -3Ez+2EzEo. 
(49) 

These analytical solutions and the further numerical 
solutions are shown in Fig. 4 and listed in Table 3. 

The transient change of the surface concentration 
V(X = 0) calculated from these values is shown in 
Fig. 5. Good agreement with the direct numerical 
solution can be seen from this figure. 

3. The other examples 
If the coefficients aj for the power series of the 

relative dithkvity (12) can be given, the simultaneous 
linear ordinary differential equation (29) can be solved 

3 
L 0 
\ 
6 
iz 

I w I 
-II I I I I 1 1 1 fi I I 

0 I 2 

7 

FIG. 4. Examples of the functions Fj for the exponential 
diffusivity case. 

Table 3. Values of F,(O) for 
D = exp(B4) 

F,(O) 1.128379167 (= 2/,/n) 
Fz(O) -0.25 (= -l/4) 
FB(O) -0.016840651 
F4@) -0.004261364 
F5 (0) -0.001501915 
Fs(O) -0.000624417 

0 Direct numerical method - 

- This work 

0 1.0 2.0 

K2T 

FIG. 5. Transient change of the surface concentration for 
the case of exponential diffusivity. 

Table 4. Examples of Fj(0) 

D(U) (1 -lcr_J)“Z (1 - IcrJ)3’2 (1 -Ku)3 

Fl(O) 1.128379167 1.128379167 1.128379167 
Fz(O) -0.125 - 0.375 -0.75 
F,(O) -0.024384438 0.022631360 0.332616746 
F4@) - 0.009226964 0.002834917 -0.083710965 
F,(O) -0.004522333 O.COO2974Ql - 0.006208076 
F6@) -0.002554149 0.000039061 0.016296072 

by analytical or numerical method. Though the general 
solutions for these equations can be easily obtained in 
the theoretical treatment, the singular solutions for 
each equation can be hardly found out especially when 
the higher terms of the coefficients are not eliminated. 

The numerical method such as the shooting method 
with the Runge-Kutta’s algorithm is available in this 
case. The numerical results for various cases of the 
dilksivity are listed in Table 4 and the transient 
changes of the surface concentration U(X = 0) calcu- 
lated from these values are shown in Fig. 6. 
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6. 

7. 

8. 

9. 

K’T 

FIG. 6. Examples of the transient change of the surface 
concentrations. 
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APPENDIX 

We are concerned with the function E,(q) which is defined 
by the following recurrence relations; 

L(v)= -$.+dd, n= -l,o,1,2, 

E..,(q) = -ff;exp(-$), 
\’ 

(A.11 

This function coincides with the repeated integral of the 
error function when n is positive integer or zero, 

E,(q) = i” erfc(q). (A.2) 

If these relations are extended to negative n, E,‘s are 
represented by the following exponential functions: 

E_,(q) = -!- exp(-t$) 
\.‘7I 

Eez(rl) = j;~.exp(--?? 

E_,(q)= -,~~exp(~,~2)+%)iz.exp(-tl’) 

(A.3) 

I 

It can be easily proved that 

2nE, = -21lE,_, +l$ L 

and that 

E:: + ZJTE:, ~ 211 E,, : u. 

From these relations, it can also he dcrl\ed that 

and that 

=~(E,,~IE,~,E,+E, ,E,,E, I +EpEy_,k; ,J. rA.7! 

The general solution for equation (37) is then described by: 

F, = ,‘l.E,(rl)+R.E,(--t~) IA.81 

where ,4 and B are constants. 
Singular solution for equation (37) is zero. The boundar: 

conditions then reduce equation (AX) to the particular 
solution; 

F, = 2E,. I i\.si 

Then equation (38) becomes 

F;+2qF;-4FZ = Xl&E. ,. (A.10) 

The general solution for this equation i, represented by 

A.E~(tj)iB.Ezl-rlI. (A1 I I 

Equation(A.6) shows that the singular solution ofequation 
(A. 10) is represented by 

4Ez EC, l.i\.l.‘l 

Then, the particular solution satisfymg the boundark ior- 
ditions becomes; 

F2 = -6E, +4ElE,,. IA l?i 

Equation (39) then becomes 

F’; + 2r/F; - 6F3 

= -24(EZE..,+El~o~+8(E,E,E j m2E2E,E~L~ 

+16(E,E,E_,+E,EoEn t-&F&I? ,, 14.1-L) 

The general and singnlar solutions arc 

/I.E,(~)+R~E.,(-~J/I 

and 

,-\.I?) 

-12(E3E0+EZE,)+4EzELE, tt(ElEjEo. tA.16) 

The particular solution which satijlics the boundar! con- 
ditions is 

F3 = 16E3- 12(E3E0+EZE,) 

+ 4EZ E, I_. l f 8E,E,E,,. 1-\.17) 

If we repeat the same procedure. we may obtain the 
further analytical solutions. 

NOUVELLE METHODE ANALYTIQUE DE RESOLUTION D’UN 
PROBLEME NON LINEAIRE DE DIFFUSION 

R&um&Une 6quation parabolique et non 1inCaire aux dirivCes partielles, avec une dilTusiviti_ d&pendant 
de la concentration est rtsolue par une mkthode analytique dans un milieu semi-infini avcc une condition 
aux limitesde flux constant. L’Cquation est transform&e en un systkme d’equations diffbrentielles ordinaires 
lint-sires. Les solutions sont reprksenttes par une sCrie de produits d’intkgrales r&p&t&es de la fonction 

d’erreur. 
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EINE NEUE ANALYTISCHE METHODE ZUR LGSUNG EINES 
NICHTLINEAREN DIFFUSIONSPROBLEMS 

889 

Zusammenfassung-Die nichtlineare, parabolische partielle Differentialgleichung mit konzentrations- 
abhangigem Diffusionskoeffizienten wird mit Hilfe einer analytischen Methode fur einen halbunendlichen 
Bereich mit konstantem Massenstrom als Randbedingung gel&t. Dabei wird die Differentialgleichung 
in ein System gewohnlicher, linearer Differentialgleichungen transformiert. Die Lijsungen werden durch 

eine Produktentwicklung aus wiederholten Integralen der Fehlerfunktion dargestellt. 

HOBbIfi AHAJIHTHYECKWfi METOA PEIIIEHPIII HEJIFIHEtiHOfi 3AflAYH 
JHI@QY3MFI 

Amroramm - Aaerca aHamirn~ecKoe pemeriue HenHHehOrO napa6onriuecKoro nH~@epeHI&ianb- 

HOrO YpaBHeHHR B 'iBCTHblX npOH3BOJlHbIX C 3aBHCSIulHM OT KOHUeHTpal&iH K03&$HHIIHeHTOM AH@- 

@y3HUAJIR nOny6eCKOHe'4HO~ o6nacTH npHnOCTOKHHOii BenHYHHe nOTOKaHarpUUilJe. PaCCMaTpH- 

BaeMOe AW$~peHUWJIbHOe YpaBHeHEie npeO6pzl30BhIBaeTCSl B CHCTeM)' 06bIKHOBeHHbIX JIHHe&ibIX 

BSaHMOCBRSaHHbIX AH@l&JeH~HiUIbHblX YpaBHeHd. PeIUeHHIl npeACTaBJIeHb1 B BBAe pKAOB, CO- 

CTORUIIX 83 npoa3Be~emi8MIioroKpaTHbIxaHTerpanoBo~ ~~HK~w~K~~oK. 


